OBSERVATIONS & RECOMMENDATIONS After reviewing data collected from **HARRISVILLE POND**, **HARRISVILLE**, the program coordinators have made the following observations and recommendations: We would like to congratulate your group on sampling the **deep spot twice** this season and the **inlets three times** this season. Typically we recommend that monitoring groups sample the **deep spot and the tributaries** three times per summer. We understand that the number of sampling events you decide to conduct per summer will depend upon volunteer availability, and your monitoring group's water monitoring goals and funding availability. However, with a limited amount of data it is difficult to determine accurate and representative water quality trends. Since weather patterns and activity in the watershed can change throughout the summer, from year to year, and even from hour to hour during a rain event, it is a good idea to sample the lake/pond at least once per month over the course of the season. If you are having difficulty finding volunteers to help sample, or to pickup or drop-off equipment at one of the laboratories, please give the VLAP Coordinator a call and we will try to help you work out an arrangement. We would like to encourage your monitoring group to formally participate in the DES Weed Watchers program, a volunteer program dedicated to monitoring the lakes and ponds for the presence of exotic aquatic plants. This program only involves a small amount of time during the summer months. Volunteers survey their waterbody once a month from **June** through **September**. To survey, volunteers slowly boat, or even snorkel, around the perimeter of the waterbody and any islands it may contain. Using the materials provided in the Weed Watchers Kit, volunteers look for any species that are of suspicion. After a trip or two around the waterbody, volunteers will have a good knowledge of its plant community and will immediately notice even the most subtle changes. If a suspicious plant is found, the volunteers will send a specimen to DES for identification. If the plant specimen is an exotic, a biologist will visit the site to determine the extent of the problem and to formulate a plan of action to control the nuisance infestation. Remember that early detection is the key to controlling the spread of exotic plants. If you would like to help protect your lake or pond from exotic plants, contact Amy Smagula, Exotic Species Program Coordinator, at 271-2248 or visit the Weed Watchers web page at www.des.state.nh.us/wmb/exoticspecies/survey.htm. #### FIGURE INTERPRETATION ➤ **Figure 1 and Table 1:** The graphs in Figure 1 (Appendix A) show the historical and current year chlorophyll-a concentration in the water column. Table 1 (Appendix B) lists the maximum, minimum, and mean concentration for each sampling season that the lake/pond has been monitored through the program. Chlorophyll-a, a pigment naturally found in plants, is an indicator of the algal abundance. Because algae are usually microscopic plants that contain chlorophyll-a, and are naturally found in lake ecosystems, the chlorophyll-a concentration measured in the water gives an estimation of the algal concentration or lake productivity. The mean (average) summer chlorophyll-a concentration for New Hampshire's lakes and ponds is 7.02 mg/m³. The current year data (the top graph) shows that the chlorophyll-a concentration *decreased slightly* from **June** to **August**. The chlorophyll-a concentration on **both sampling events** was *less than* the state mean. Overall, the statistical analysis of the historical data shows that the chlorophyll-a concentration has **significantly decreased** since monitoring began. Specifically, the chlorophyll-a concentration has **decreased** (meaning **improved**) on average **by approximately 7.3** % per sampling season during the sampling period **1991** to **2004**. (Note: Please refer to Appendix E for the detailed statistical analysis explanation and data print out.) We hope this trend continues! While algae are naturally present in all lakes/ponds, an excessive or increasing amount of any type is not welcomed. In freshwater lakes/ponds, phosphorus is the nutrient that algae depend upon for growth. Algal concentrations may increase with an increase in nonpoint sources of phosphorus loading from the watershed, or in-lake sources of phosphorus loading (such as phosphorus releases from the sediments). Therefore, it is extremely important for volunteer monitors to continually educate residents about how activities within the watershed can affect phosphorus loading and lake/pond quality. Figure 2 and Table 3: The graphs in Figure 2 (Appendix A) show historical and current year data for lake/pond transparency. Table 3 (Appendix B) lists the maximum, minimum and mean transparency data for each sampling season that the lake/pond has been monitored through the program. Volunteer monitors use the Secchi-disk, a 20 cm disk with alternating black and white quadrants, to measure water clarity (how far a person can see into the water). Transparency, a measure of water clarity, can be affected by the amount of algae and sediment from erosion, as well as the natural colors of the water. **The mean (average) summer transparency for New Hampshire's lakes and ponds is 3.7 meters.** The current year data (the top graph) show that the in-lake transparency *increased* from **June** to **August**. The transparency in **June** was **less than** the state mean and in **August** was **approximately equal to** the state mean. It is important to note that as the chlorophyll concentration **decreased** at the deep spot this season, the transparency **increased**. We typically expect this **inverse** relationship in lakes. As the amount of algal cells in the water **decreases** the depth to which one can see into the water column typically **increases**. The historical data (the bottom graph) show that the 2004 mean transparency is *slightly less than* the state mean. Overall, the statistical analysis of the historical data shows that the transparency has **significantly decreased** since monitoring began. Specifically, the in-lake transparency has **decreased** (meaning **worsened**) on average by **approximately 1.5** % per sampling season during the sampling period **1991** to **2004**. (Note: Please refer to Appendix E for the statistical analysis explanation and data print out.) Typically, high intensity rainfall causes erosion of sediments into lakes/ponds and streams, thus decreasing clarity. Efforts should continually be made to stabilize stream banks, lake/pond shorelines, disturbed soils within the watershed, and especially dirt roads located immediately adjacent to the edge of tributaries and the lake/pond. Guides to Best Management Practices designed to reduce, and possibly even eliminate, nonpoint source pollutants, such as sediment loading, are available from DES upon request. Figure 3 and Table 8: The graphs in Figure 3 (Appendix A) show the amounts of phosphorus in the epilimnion (the upper layer) and the hypolimnion (the lower layer); the inset graphs show current year data. Table 8 (Appendix B) lists the annual maximum, minimum, and median concentration for each deep spot layer and each tributary since the lake/pond has joined the program. Phosphorus is the limiting nutrient for plant and algae growth in New Hampshire's freshwater lakes and ponds. Too much phosphorus in a lake/pond can lead to increases in plant and algal growth over time. The median summer total phosphorus concentration in the epilimnion (upper layer) of New Hampshire's lakes and ponds is 12 ug/L. The median summer phosphorus concentration in the hypolimnion (lower layer) is 14 ug/L. The current year data for the epilimnion (the top inset graph) and the hypolimnion show that the phosphorus concentration **decreased** from **June** to **August**. The phosphorus concentration **each sampling event** was **less than** the state median. The turbidity of the hypolimnion (lower layer) sample was *elevated* on the **August** sampling event (**8.67 NTUs**). This suggests that the lake/pond bottom may have been disturbed by the anchor or by the Kemmerer Bottle while sampling. When the lake/pond bottom is disturbed, sediment, which typically contains attached phosphorus, is released into the water column. When collecting the hypolimnion sample, make sure that there is no sediment in the Kemmerer Bottle before filling the sample bottles. Overall, the statistical analysis of the historical data shows that the phosphorus concentration in the epilimnion (upper layer) has **significantly decreased** since monitoring began. Specifically, the phosphorus concentration in the epilimnion has **decreased** (meaning **improved**) on average by **approximately 4.5** % per sampling season during the sampling period **1991** to **2004**. (Note: Please refer to Appendix E for the statistical analysis explanation and data print out.) We hope this trend continues! Overall, the statistical analysis of the historical data shows that the phosphorus concentration in the hypolimnion (lower layer) has **not significantly changed** since monitoring began. Specifically, the phosphorus concentration has **fluctuated** but has **not continually increased** or **decreased** since **1991**. One of the most important approaches to reducing phosphorus loading to a waterbody is to continually educate watershed residents about its sources and how excessive amounts can adversely impact the ecology and value of lakes and ponds. Phosphorus sources within a lake or pond's watershed typically include septic systems, animal waste, lawn fertilizer, road and construction erosion, and natural wetlands. #### **TABLE INTERPRETATION** ## > Table 2: Phytoplankton Table 2 (Appendix B) lists the current and historical phytoplankton species observed in the lake/pond. Specifically, this table list the three most dominant phytoplankton species observed in the sample and their relative abundance in the sample. In addition, this table has been enhanced this year to include the overall phytoplankton cell abundance rating of the sample. The overall phytoplankton cell abundance in a sample is calculated using a formula based on the relationship that DES biologists have observed over the years regarding phytoplankton concentrations, algal concentrations, and biological productivity in New Hampshire's lakes and ponds. mathematical equation is used to classify the overall abundance of phytoplankton cells in a sample into the following categories: sparse, scattered, moderate, common, abundant, and very abundant. Generally, the more phytoplankton cells there are in a sample, the higher the chlorophyll concentration and the higher the biological productivity of the lake. The dominant phytoplankton species observed in the **June** sample this year were **Dinobryon** (golden-brown), **Asterionella** (diatom), and **Rhizosolenia** (diatom). The overall abundance of rating phytoplankton cells in the sample was calculated to be **common.** Phytoplankton populations undergo a natural succession during the growing season (Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding seasonal plankton succession). Diatoms and golden-brown algae are typical in New Hampshire's less productive lakes and ponds. #### > Table 4: pH Table 4 (Appendix B) presents the in-lake and tributary current year and historical pH data. pH is measured on a logarithmic scale of 0 (acidic) to 14 (basic). pH is important to the survival and reproduction of fish and other aquatic life. A pH below 6.0 limits the growth and reproduction of fish. A pH between 6.0 and 7.0 is ideal for fish. The mean pH value for the epilimnion (upper layer) in New Hampshire's lakes and ponds is **6.6**, which indicates that the surface waters in the state are slightly acidic. For a more detailed explanation regarding pH, please refer to the "Chemical Monitoring Parameters" section of this report. The mean pH at the deep spot this season ranged from **5.65** in the hypolimnion to **5.95** in the epilimnion, which means that the water is **slightly acidic.** It is important to point out that the pH in the hypolimnion (lower layer) was *lower (more acidic)* than in the epilimnion (upper layer). This increase in acidity near the lake bottom is likely due the decomposition of organic matter and the release of acidic by-products into the water column. Due to the presence of granite bedrock in the state and acid deposition (from snowmelt, rainfall, and atmospheric particulates) in New Hampshire, there is not much that can be done to effectively increase lake/pond pH. # > Table 5: Acid Neutralizing Capacity Table 5 (Appendix B) presents the current year and historical epilimnetic ANC for each year the lake/pond has been monitored through VLAP. Buffering capacity (ANC) describes the ability of a solution to resist changes in pH by neutralizing the acidic input. The mean ANC value for New Hampshire's lakes and ponds is **6.6 mg/L**, which indicates that many lakes and ponds in the state are at least "moderately vulnerable" to acidic inputs. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report. The mean Acid Neutralizing Capacity (ANC) of the epilimnion (the upper layer) was **0.8 mg/L** this season, which is **much less than** the state mean. In addition, this indicates that the lake/pond is **extremely vulnerable** to acidic inputs (such as acid precipitation). # > Table 6: Conductivity Table 6 (Appendix B) presents the current and historical conductivity values for tributaries and in-lake data. Conductivity is the numerical expression of the ability of water to carry an electric current (which is determined by the number of negatively charged ions from metals, salts, and minerals in the water column). The mean conductivity value for New Hampshire's lakes and ponds is **59.4 uMhos/cm**. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report. The mean annual conductivity in the epilimnion at the deep spot this season was **27.59 uMhos/cm**, which is *much less than* to the state mean. The conductivity in the lake/pond is relatively **stable** and **low.** Typically conductivity levels greater than 100 uMhos/cm indicate the influence of human activities on surface water quality. These activities include septic system leachate, agricultural runoff, iron deposits, and road runoff (which contains road salt during the spring snow melt). The low conductivity level in the **lake/pond** is an indication of the low amount of pollutants and erosion in the watershed. We hope this trend continues! # > Table 8: Total Phosphorus Table 8 (Appendix B) presents the current year and historical total phosphorus data for in-lake and tributary stations. Phosphorus is the nutrient that limits the algae's ability to grow and reproduce. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation. The phosphorus concentration in the inlets was relatively low this season which is good news. However, we recommend that your monitoring group sample the major tributaries to the lake/pond soon after snow-melt and periodically during rain storms to determine if the phosphorus concentration is *elevated* in the tributaries during these times. Typically, the majority of nutrient loading to a lake/pond occurs in the spring during snowmelt and during intense rain storms that cause surface runoff and erosion within the watershed. For a detailed explanation on how to conduct rain event sampling please refer to the 2002 VLAP Annual Report "Special Topic Article" or contact the VLAP Coordinator. ## Table 9 and Table 10: Dissolved Oxygen and Temperature Data Table 9 (Appendix B) shows the dissolved oxygen/temperature profile(s) for the 2004 sampling season. Table 10 (Appendix B) shows the historical and current year dissolved oxygen concentration in the hypolimnion (lower layer). The presence of dissolved oxygen is vital to fish and amphibians in the water column and also to bottom-dwelling organisms. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation. The dissolved oxygen concentration was *lower in the hypolimnion* (*lower layer*) than in the epilimnion (upper layer) at the deep spot of the lake/pond. As stratified lakes/ponds age, and as the summer progresses, oxygen typically becomes *depleted* in the hypolimnion by the process of decomposition. Specifically, the loss of oxygen in the hypolimnion results primarily from the process of biological breakdown of organic matter (i.e.; biological organisms use oxygen to break down organic matter), both in the water column and particularly at the bottom of the lake/pond where the water meets the sediment. When oxygen levels are depleted to less than 1 mg/L in the hypolimnion (as it has been in previous years), the phosphorus that is normally bound up in the sediment may be re-released into the water column (a process referred to as *internal phosphorus loading*). The **lower** oxygen level in the hypolimnion is a sign of the lake's/pond's **aging** and **declining** health. This year the DES biologist conducted the temperature/dissolved oxygen profile in **June**. We recommend that the annual biologist visit for the 2005 sampling season be scheduled during **July or August** so that we can determine if oxygen is depleted in the hypolimnion **later** in the sampling season. # > Table 11: Turbidity Table 11 (Appendix B) lists the current year and historical data for inlake and tributary turbidity. Turbidity in the water is caused by suspended matter, such as clay, silt, and algae. Water clarity is strongly influenced by turbidity. Please refer to the "Other Monitoring Parameters" section of this report for a more detailed explanation. The tributary turbidity was **relatively low** this season which suggests that erosion may not be a major contributor of sediment and nutrient loading to the lake/pond. This is good news and we hope to see this trend continue. As discussed previously, the turbidity of the hypolimnion (lower layer) sample was *elevated* on the **August** sampling event. This suggests that the lake/pond bottom may have been disturbed by the anchor or by the Kemmerer Bottle while sampling. When the lake/pond bottom is disturbed, sediment, which typically contains attached phosphorus, is released into the water column. When collecting the hypolimnion sample, make sure that there is no sediment in the Kemmerer Bottle before filling the sample bottles. #### Table 12: Bacteria (E.coli) Table 12 lists the current year and historical data for bacteria (*E.coli*) testing. (Please note that Table 12 now lists the maximum and minimum results for this season and for all past sampling seasons.) *E. coli* is a normal bacterium found in the large intestine of humans and other warm-blooded animals. *E.coli* is used as an indicator organism because it is easily cultured and its presence in the water, in defined amounts, indicates that sewage **MAY** be present. If sewage is present in the water, potentially harmful disease-causing organisms **MAY** also be present. The *E.coli* concentration was **low** at each of the sites tested this season. We hope this trend continues! If residents are concerned about sources of bacteria such as failing septic systems, animal waste, or waterfowl waste, it is best to conduct *E. coli* testing when the water table is high, when beach use is heavy, or immediately after rain events. # > Table 14: Current Year Biological and Chemical Raw Data This table is a new addition to the Annual Report. This table lists the most current sampling season results. Since the maximum, minimum, and annual mean values for each parameter are not shown on this table, this table displays the current year "raw" (meaning unprocessed) data. The results are sorted by station, depth zone (epilimnion, metalimnion, and hypolimnion) and parameter. #### > Table 15: Station Table This table is a new addition to the Annual Report. As of the Spring of 2004, all historical and current year VLAP data is included in the DES Environmental Monitoring Database (EMD). To facilitate the transfer of VLAP data into the EMD, a new station identification system had to be developed. While volunteer monitoring groups can still use the sampling station names that they have used in the past (and are most familiar with), an EMD station name also exists for each VLAP sampling location. For each station sampled at your lake or pond, Table 15 identifies what EMD station name corresponds to the station names you have used in the past and will continue to use in the future. #### **DATA QUALITY ASSURANCE AND CONTROL** #### **Annual Assessment Audit:** During the annual visit to your lake/pond, the biologist conducted a "Sampling Procedures Assessment Audit" for your monitoring group. Specifically, the biologist observed the performance of your monitoring group while sampling and filled out an assessment audit sheet to document the ability of the volunteer monitors to follow the proper field sampling procedures (as outlined in the VLAP Monitor's Field Manual). This assessment is used to identify any aspects of sample collection in which volunteer monitors fail to follow proper procedures, and also provides an opportunity for the biologist to retrain the volunteer monitors as necessary. This will ultimately ensure that the samples that the volunteer monitors collect are truly representative of actual lake and tributary conditions. Overall, your monitoring group did an **excellent** job collecting samples on the annual biologist visit this season! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the biologist to provide additional training. Keep up the good work! # **Sample Receipt Checklist:** Each time your monitoring group dropped off samples at the laboratory this summer, the laboratory staff completed a sample receipt checklist to assess and document if the volunteer monitors followed proper sampling techniques when collecting the samples. The purpose of the sample receipt checklist is to minimize, and hopefully eliminate, future reoccurrences of improper sampling techniques. Overall, the sample receipt checklist showed that your monitoring group did a **very good** job when collecting samples this season! Specifically, the members of your monitoring group followed the majority of the proper field sampling procedures when collecting and submitting samples to the laboratory. However, the laboratory did identify one aspect of sample collection that the volunteer monitors could improve upon, as follows: ➤ Complete sample sets: Please remember to collect one "big white" bottle (pH, ANC, turbidity, conductivity), and one "small brown" bottle (phosphorus) at each inlet and deep spot location on each sampling event. In addition, please collect a chlorophyll sample in the "big brown" bottle on each sampling event. Collecting a complete set of samples on each sampling event will allow us to better determine the quality of the lake/pond. #### **USEFUL RESOURCES** Acid Deposition Impacting New Hampshire's Ecosystems, NHDES Fact Sheet ARD-32, (603) 271-2975 or www.des.state.nh.us/factsheets/ard/ard-32.htm. Best Management Practices to Control Nonpoint Source Pollution: A Guide for Citizens and Town Officials, NHDES Booklet WD-03-42, (603) 271-2975. Best Management Practices for Well Drilling Operations, NHDES Fact Sheet WD-WSEB-21-4, (603) 271-2975 or www.des.nh.gov/factsheets/ws/ws-21-4.htm. Canada Geese Facts and Management Options, NHDES Fact Sheet BB-53, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-53.htm. Cyanobacteria in New Hampshire Waters Potential Dangers of Blue-Green Algae Blooms, NHDES Fact Sheet WMB-10, (603) 271-2975 or www.des.state.nh.us/factsheets/wmb/wmb-10.htm. Erosion Control for Construction in the Protected Shoreland Buffer Zone, NHDES Fact Sheet WD-SP-1, (603) 271-2975 or www.des.state.nh.us/factsheets/sp/sp-1.htm. *Freshwater Jellyfish In New Hampshire,* NHDES Fact Sheet WD-BB-5, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-51/htm. Impacts of Development Upon Stormwater Runoff, NHDES Fact Sheet WD-WQE-7, (603) 271-2975 or www.des.state.nh.us/factsheets/wqe/wqe-7.htm. *IPM:* An Alternative to Pesticides, NHDES Fact Sheet WD-SP-3, (603) 271-2975 or www.des.state.nh.us/factsheets/sp/sp-3.htm. *Iron Bacteria in Surface Water*, NHDES Fact Sheet WD-BB-18, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-18.htm. *Lake Foam,* NHDES Fact Sheet WD-BB-4, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-5.htm. Lake Protection Tips: Some Do's and Don'ts for Maintaining Healthy Lakes, NHDES Fact Sheet WD-BB-9, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-9.htm. Proper Lawn Care In the Protected Shoreland, The Comprehensive Shoreland Protection Act, NHDES Fact Sheet WD-SP-2, (603) 271-2975 or www.des.state.nh.us/factsheets/sp/sp-2.htm. Road Salt and Water Quality, NHDES Fact Sheet WD-WMB-4, (603) 271-2975 or www.des.state.nh.us/factsheets/wmb/wmb-4.htm. Sand Dumping - Beach Construction, NHDES Fact Sheet WD-BB-15, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-15.htm. Shorelands Under the Jurisdiction of the Comprehensive Shoreland Protection Act, NHDES Fact Sheet SP-4, (603) 271-2975 or www.des.state.nh.us/factsheets/sp/sp-4.htm. Soil Erosion and Sediment Control on Construction Sites, NHDES Fact Sheet WQE-6, (603) 271-2975 or www.des.state.nh.us/factsheets/wqe/wqe-6.htm. Swimmers Itch, NHDES Fact Sheet WD-BB-2, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-2.htm. Through the Looking Glass: A Field Guide to Aquatic Plants, North American Lake Management Society, 1988, (608) 233-2836 or www.nalms.org. Weed Watchers: An Association to Halt the Spread of Exotic Aquatic Plants, NHDES Fact Sheet WD-BB-4, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-4.htm.